Sparsity and level set regularization for diffuse optical tomography using a transport model in 2D

نویسنده

  • Oliver Dorn
چکیده

In this paper we address an inverse problem for the time-dependent linear transport equation (or radiative transfer equation) in 2D having in mind applications in diffuse optical tomography (DOT). We propose two new reconstruction algorithms which so far have not been applied to such a situation and compare their performances in certain practically relevant situations. The first of these reconstruction algorithms uses a sparsity promoting regularization scheme, whereas the second one uses a simultaneous level set reconstruction scheme for two parameters of the linear transport equation. We will also compare the results of both schemes with a third scheme which is a more traditional L-based Landweber–Kaczmarz scheme. We focus our attention on the DOT application of imaging the human head of a neonate where the simpler diffusion approximation is not well-suited for the inversion due to the presence of a clear layer beneath the skull which is filled with ‘low-scattering’ cerebrospinal fluid. This layer, even if its location and characteristics are known a priori, poses significant difficulties for most reconstruction schemes due to its ‘wave-guiding’ property which reduces sensitivity of the data to the interior regions. A further complication arises due to the necessity to reconstruct simultaneously two different parameters of the linear transport equation, the scattering and the absorption cross-section, from the same data set. A significant ‘cross-talk’ between these two parameters is usually expected. Our numerical experiments indicate that each of the three considered reconstruction schemes do have their merits and perform differently but reasonably well when the clear layer is a priori known. We also Inverse Problems Inverse Problems 33 (2017) 014001 (28pp) doi:10.1088/0266-5611/33/1/014001 Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. 0266-5611/17/014001+28$33.00 © 2016 IOP Publishing Ltd Printed in the UK 1 demonstrate the behavior of the three algorithms in the particular situation where the clear layer is unknown during the reconstruction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Method for Model Reduction in Diffuse Optical Tomography

We present an efficient method for the reduction of model equations in the linearized diffuse optical tomography (DOT) problem. We first implement the maximum a posteriori (MAP) estimator and Tikhonov regularization, which are based on applying preconditioners to linear perturbation equations. For model reduction, the precondition is split into two parts: the principal components are consid...

متن کامل

Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm.

We present an image reconstruction method for diffuse optical tomography (DOT) by using the sparsity regularization and expectation-maximization (EM) algorithm. Typical image reconstruction approaches in DOT employ Tikhonov-type regularization, which imposes restrictions on the L(2) norm of the optical properties (absorption/scattering coefficients). It tends to cause a blurring effect in the r...

متن کامل

Image Reconstruction for Diffuse Optical Tomography Based on Radiative Transfer Equation

Diffuse optical tomography is a novel molecular imaging technology for small animal studies. Most known reconstruction methods use the diffusion equation (DA) as forward model, although the validation of DA breaks down in certain situations. In this work, we use the radiative transfer equation as forward model which provides an accurate description of the light propagation within biological med...

متن کامل

Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization

An l(p) (0 < p ≤ 1) sparsity regularization is applied to time-domain diffuse optical tomography with a gradient-based nonlinear optimization scheme to improve the spatial resolution and the robustness to noise. The expression of the l(p) sparsity regularization is reformulated as a differentiable function of a parameter to avoid the difficulty in calculating its gradient in the optimization pr...

متن کامل

Optical tomography as a PDE-constrained optimization problem

We report on the implementation of an augmented Lagrangian approach for solving the inverse problems in diffuse optical tomography (DOT). The forward model of light propagation is the radiative transport equation (RTE). The inverse problem is formulated as a minimization problem with the RTE being considered as an equality constraint on the set of ‘optical properties—radiance’ pairs. This appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016